✈️ Gate 广场【Gate Travel 旅行分享官召集令】
广场家人们注意啦!Gate Travel 已经上线~ 机票+酒店一站式预订,还能用加密货币直接付款 💸
所以说,你的钱包和你的旅行梦终于可以谈恋爱了 😎 💕
现在广场开启 #GateTravel旅行分享官# 活动,邀你来秀旅行灵感 & 使用体验!💡
🌴 参与方式:
1️⃣ 在【广场】带话题 #Gate Travel 旅行分享官# 发帖
2️⃣ 你可以:
你最想用 Gate Travel 去的目的地(私藏小岛 or 网红打卡点都行)
讲讲用 Gate Travel 订票/订酒店的奇妙体验
放放省钱/使用攻略,让大家省到笑出声
或者直接写一篇轻松的 Gate Travel 旅行小故事
📦 奖励安排,走起:
🏆 优秀分享官(1 名):Gate 旅行露营套装
🎖️ 热门分享官(3 名):Gate 旅行速干套装
🎉 幸运参与奖(5 名):Gate 国际米兰旅行小夜灯
*海外用户 旅行露营套装 以 $100 合约体验券,旅行速干套装 以 $50 合约体验券折算,国际米兰旅行小夜灯以 $30合约体验券折算。
📌 优质内容将有机会得到官方账号转发翻牌提升社区曝光!
📌 帖文将综合互动量、内容丰富度和创意评分。禁止小号刷贴,原创分享更容易脱颖而出!
🕒 8月20 18:00 - 8月28日 24:00 UTC+
AI大模型里的不平等:汉语训练费用是英语的2倍!
来源:Ifanr
作者:莫崇宇
近日,X(原 Twitter)用户@Dylan Patel 展示了一份来自牛津大学的研究:通过对 GPT-4 和大多数其他常见 LLM 的语言进行研究,研究发现 LLM(大语言模型)推理的成本差异很大。
其中英语输入和输出要比其他语言便宜得多,简体中文的成本大约是英语的 2 倍,西班牙语的成本是英语的 1.5 倍,而缅甸掸语则是英语的 15 倍。
究其原理,可以追溯到今年 5 月份牛津大学在 arXiv 上刊印的一篇的论文。
毫无疑问,在生成式 AI 商业化的趋势下,计算力的耗费成本也会嫁接给用户,当下许多 AI 服务也正是按照需要处理的词元数量来计费。
论文显示,研究者通过分析 17 种词元化方法后,发现同一文本被转换成不同语言词元序列时长度差异巨大,即使是宣称支持多语言的词元化方法,也无法做到词元序列长度完全公平。
例如,根据 OpenAI 的 GPT3 tokenizer,倘若给「你的爱意」词元化,英语只需两个词元,而在简体中文中则需要八个词元。即使简体中文文本只有 4 个字符,而英文文本有 14 个字符。
类似的情况也有很多,Aleksandar Petrov 的网站中提供了许多相关的图标和数据,感兴趣的朋友不妨点击「进去查看语言之间的差异。
在 OpenAI 的官网上也有着类似的页面,解释了 API 是如何对一段文本进行词元化,以及显示该文本的词元总数。官网也提到,一个词元通常对应英语文本的约 4 个字符,100 个词元约等于 75 个单词。
除此之外,这种词元序列长度的差异也会导致处理延迟不公平(某些语言处理同样内容需要更多时间)和长序列依赖性建模不公平(部分语言只能处理更短的文本)。
简单点理解,就是某些语言的用户需要支付更高的成本,承受更大的延迟,获得更差的性能,从而降低了他们公平地访问语言技术的机会,也就间接导致了英语使用者和世界其他语言使用之间形成了 AI 鸿沟。
仅从输出的成本来看,简体中文的成本是英语的两倍。伴随着 AI 领域的深层次发展,总是「差一步」的简体中文显然并不友好。在成本等各方面叠加因素的权衡下,非英语母语的国家也纷纷尝试开发自己的母语语言大模型。
随后阿里巴巴的通义千问大模型、华为的盘古大模型等一批批优秀大模型也陆续涌现出来。
在这当中,华为盘古大模型中的 NLP 大模型更是行业内首个千亿参数中文大模型,拥有 1100 亿密集参数,经过 40TB 的海量数据训练而成。
正如联合国常务副秘书长阿米娜·穆罕默德曾经在联合国大会上警告说,如果国际社会不采取果断行动,数字鸿沟将成为「不平等的新面孔」。
同理,伴随着生成式 AI 的狂飙突进,AI 鸿沟也很有可能成为新一轮值得关注的「不平等的新面孔」。
所幸的是,平时「惨遭嫌弃」的国内的科技巨头已然采取了行动。